Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages.
نویسندگان
چکیده
Recently, we demonstrated that human monocyte-derived macrophages (MDM) treated with chloroquine or ammonium chloride had markedly increased antifungal activity against the AIDS-related pathogen Cryptococcus neoformans. Both of these agents raise the lysosomal pH, which suggested that the increased antifungal activity was a function of alkalinizing the phagolysosome. Moreover, there was an inverse correlation between growth of C. neoformans in cell-free media and pH. These data suggested that C. neoformans was well adapted to survive within acidic compartments. To test this hypothesis, we performed studies to determine the pH of human MDM and neutrophil phagosomes containing C. neoformans. Fungi were labeled with the isothiocyanate derivatives of two pH-sensitive probes: fluorescein and 2',7'-difluorofluorescein (Oregon Green). These probes have pKas of 6.4 and 4.7, respectively, allowing sensitive pH detection over a broad range. The phagosomal pH averaged approximately 5 after ingestion of either live or heat-killed fungi and remained relatively constant over time, which suggested that C. neoformans does not actively regulate the pH of its phagosome. The addition of 10 and 100 microM chloroquine resulted in increases in the phagosomal pH from a baseline of 5.1 up to 6.5 and 7.3, respectively. Finally, by immunofluorescence, colocalization of C. neoformans and the MDM lysosomal membrane protein LAMP-1 was demonstrated, establishing that fusion of C. neoformans-laden phagosomes with lysosomal compartments takes place. Thus, unlike many other intracellular pathogens, C. neoformans does not avoid fusion with macrophage lysosomal compartments but rather resides and survives in an acidic phagolysosome.
منابع مشابه
Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans.
The pathogenic fungus Cryptococcus neoformans infects humans upon inhalation and causes the most common fungal meningoencephalitis in immunocompromised subjects worldwide. In the host, C. neoformans is found both intracellularly and extracellularly, but how these two components contribute to the development of the disease is largely unknown. Here we show that the glycosphingolipid glucosylceram...
متن کاملCryptococcus neoformans: Tripping on Acid in the Phagolysosome
Cryptococcus neoformans (Cn) is a basidiomycetous pathogenic yeast that is a frequent cause of meningoencephalitis in immunocompromised individuals. Cn is a facultative intracellular pathogen in mammals, insects and amoeba. Cn infection occurs after inhalation of spores or desiccated cells from the environment. After inhalation Cn localizes to the lungs where it can be phagocytosed by alveolar ...
متن کاملDepletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice.
In previous studies we showed that a Cryptococcus neoformans mutant lacking glucosylceramide (Deltagcs1) is avirulent and unable to reach the brain when it is administered intranasally into an immunocompetent mouse and is contained in a lung granuloma. To determine whether granuloma formation is key for containment of C. neoformans Deltagcs1, we studied the role of C. neoformans glucosylceramid...
متن کاملMathematical modeling of pathogenicity of Cryptococcus neoformans
Cryptococcus neoformans (Cn) is the most common cause of fungal meningitis worldwide. In infected patients, growth of the fungus can occur within the phagolysosome of phagocytic cells, especially in non-activated macrophages of immunocompromised subjects. Since this environment is characteristically acidic, Cn must adapt to low pH to survive and efficiently cause disease. In the present work, w...
متن کاملALL2, a Homologue of ALL1, Has a Distinct Role in Regulating pH Homeostasis in the Pathogen Cryptococcus neoformans.
Cryptococcus neoformans is a facultative intracellular fungal pathogen that has a polysaccharide capsule and causes life-threatening meningoencephalitis. Its capsule, as well as its ability to survive in the acidic environment of the phagolysosome, contributes to the pathogen's resilience in the host environment. Previously, we reported that downregulation of allergen 1 (ALL1) results in the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 67 2 شماره
صفحات -
تاریخ انتشار 1999